Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cells ; 10(5)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1223956

ABSTRACT

Macrophages comprise a phenotypically and functionally diverse group of hematopoietic cells. Versatile macrophage subsets engage to ensure maintenance of tissue integrity. To perform tissue stress surveillance, macrophages express many different stress-sensing receptors, including purinergic P2X and P2Y receptors that respond to extracellular nucleotides and their sugar derivatives. Activation of G protein-coupled P2Y receptors can be both pro- and anti-inflammatory. Current examples include the observation that P2Y14 receptor promotes STAT1-mediated inflammation in pro-inflammatory M1 macrophages as well as the demonstration that P2Y11 receptor suppresses the secretion of tumor necrosis factor (TNF)-α and concomitantly promotes the release of soluble TNF receptors from anti-inflammatory M2 macrophages. Here, we review macrophage regulation by P2Y purinergic receptors, both in physiological and disease-associated inflammation. Therapeutic targeting of anti-inflammatory P2Y receptor signaling is desirable to attenuate excessive inflammation in infectious diseases such as COVID-19. Conversely, anti-inflammatory P2Y receptor signaling must be suppressed during cancer therapy to preserve its efficacy.


Subject(s)
Inflammation/immunology , Macrophages/immunology , Receptors, Purinergic P2Y/metabolism , Stress, Physiological/immunology , Animals , COVID-19/blood , COVID-19/immunology , Humans , Immunologic Surveillance/drug effects , Immunologic Surveillance/immunology , Inflammation/blood , Inflammation/drug therapy , Macrophages/metabolism , Mice , Neoplasms/blood , Neoplasms/drug therapy , Neoplasms/immunology , Purinergic P2Y Receptor Agonists/pharmacology , Purinergic P2Y Receptor Agonists/therapeutic use , Purinergic P2Y Receptor Antagonists/pharmacology , Purinergic P2Y Receptor Antagonists/therapeutic use , Receptors, Tumor Necrosis Factor/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/metabolism , COVID-19 Drug Treatment
2.
Brain Behav Immun ; 89: 480-490, 2020 10.
Article in English | MEDLINE | ID: covidwho-669660

ABSTRACT

The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.


Subject(s)
Central Nervous System Infections/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2X/metabolism , Receptors, Purinergic P2Y/metabolism , AIDS Dementia Complex/metabolism , Betacoronavirus , COVID-19 , Coronavirus Infections/metabolism , Encephalitis, Herpes Simplex/metabolism , Humans , Malaria/metabolism , Meningitis, Bacterial/metabolism , Meningitis, Cryptococcal/metabolism , Pandemics , Pneumonia, Viral/metabolism , SARS-CoV-2 , Sepsis/metabolism , Signal Transduction , Toxoplasmosis, Cerebral/metabolism , Zika Virus Infection/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL